
Involution Solid Codes

Lila Kari and Kalpana Mahalingam

University of Western Ontario, Department of Computer Science,
London, ON N6A5B7, Canada
lila,kalpana@csd.uwo.ca

1 Introduction

DNA sequences consist of four nucleotide bases A, G, C, T (adenine, guanine,
cytosine and thymine) and are joined together by phosphodiester bonds. A sin-
gle strand of DNA, i.e. a chain of nucleotides, also has a “beginning” (usually
denoted by 5′) and an “end” (denoted by 3′), and so the molecule is oriented.
By the well-known Watson–Crick complementarity, A is complementary to T
and C is complementary to G. The double-helix DNA strands are formed by a
sequence and its complement binding together. The complementary strand is
obtained by replacing the base nucleotide with its complement and reversing
its direction.

Besides these “perfect” bonds, in practice certain strands can bind to
others which are not their exact complements, hence rendering them useless
for subsequent computation. Several attempts have been made to address
this issue and many authors have proposed various solutions. A common ap-
proach has been to use the Hamming distance [1, 5, 6, 7, 26]. Experimental
separation of strands with “good” sequences that avoid intermolecular cross-
hybridization was reported in [3, 4].

In [11], Kari et al. introduce a theoretical approach to the problem of
designing code words. Theoretical properties of languages that avoid certain
undesirable hybridizations were discussed in [13, 18, 19, 25]. Based on these
ideas and code-theoretic properties, a computer program for generating code
words is being developed [12, 22]. Another algorithm based on backtracking,
for generating such code words has also been developed by Li [24]. In [21]
the authors have introduced a property of a language and showed that the
properties discussed in [13, 19, 25] are its special cases. In [23] the author used
the notion of partial words with holes for the design of DNA strands. In this
chapter we follow the approach introduced in [11].

Every biomolecular protocol involving DNA or RNA generates molecules
whose sequences of nucleotides form a language over the four-letter alphabet

138 L. Kari, K. Mahalingam

Δ = {A, G, C, T}. The Watson–Crick complementarity of the nucleotides de-
fines a natural involution mapping θ, A �→ T and G �→ C which is an antimor-
phism of Δ∗. Undesirable Watson–Crick bonds (undesirable hybridizations)
can be avoided if the language satisfies certain coding properties. In this paper
we concentrate on θ-overlap free and θ-solid codes.

We start the chapter with definitions of coding properties that avoid inter-
molecular cross-hybridizations. The notions of θ-prefix and θ-suffix languages
have been defined in [19] under the names of θ-p-compliant and θ-s-compliant,
respectively. Here we consider sets of code words where the Watson–Crick
complement of a word does not overlap with any other word. Hence, we have
two additional coding properties that leads to the notion of θ-overlap-free code
and θ-solid code. We make several observations about the closure properties
of such languages. In particular, we concentrate on properties of languages
that are preserved by union and concatenation. Also, we show that if a set of
DNA strands has “good” coding properties that are preserved under concate-
nation, then the same properties will be preserved under arbitrary ligation of
the strands. Section 3 investigates properties of θ-overlap-free codes. Section
4 investigates the properties of θ-solid codes.

2 Definitions

An alphabet Σ is a finite non-empty set of symbols. A word u over Σ is a
finite sequence of symbols in Σ. We denote by Σ∗ the set of all words over Σ,
including the empty word 1 and, by Σ+, the set of all nonempty words over
Σ. We note that with the concatenation operation on words, Σ∗ is the free
monoid and Σ+ is the free semigroup generated by Σ. For a word w ∈ Σ∗,
the length of w is the number of non empty symbols in w and is denoted by
|w|. Throughout the rest of the chapter, we concentrate on finite sets X ⊆ Σ∗

that are codes, i.e., every word in X+ can be written uniquely as a product
of words in X . For the background on codes we refer the reader to [2, 16, 27].
For a language X ⊆ Σ∗, let

PPref(X) = {u | ∃v ∈ Σ+, uv ∈ X }
PSuff(X) = {u | ∃v ∈ Σ+, vu ∈ X }
PSub(X) = {u | ∃v1 , v2 ∈ Σ∗, v1 v2 	= 1 , v1uv2 ∈ X }.

We recall the definitions initiated in [11, 19] and used in [12, 18].
An involution θ : Σ → Σ of a set Σ is a mapping such that θ2 equals the

identity mapping, θ(θ(x)) = x, ∀x ∈ Σ.

Definition 1. Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution and
X ⊆ Σ+.

1. The set X is called θ-infix if Σ∗θ(X)Σ+∩X = ∅ and Σ+θ(X)Σ∗∩X = ∅.
2. The set X is called θ-comma-free if X2 ∩ Σ+θ(X)Σ+ = ∅.

Involution Solid Codes 139

3. The set X is called θ-prefix if X ∩ θ(X)Σ+ = ∅.
4. The set X is called θ-suffix if X ∩ Σ+θ(X) = ∅.
5. The set X is called θ-sticky-free if for all w ∈ Σ+, x, y ∈ Σ∗, wx, yθ(w) ∈

X then xy = 1.
6. The set X is called θ-overhang-free if for all w ∈ Σ+, x, y ∈ Σ∗,

wx, θ(w)y ∈ X or xw, yθ(w) ∈ X then xy = 1.
7. The set X is called strictly θ if X ∩ θ(X) = ∅.

Involution solid codes

(a)
(b)

(c)

(d) (e)

Fig. 1. Various types of intermolecular hybridizations. (a) (θ-overlap-free) The
prefix or suffix of a code word is a suffix or prefix respectively of a complement
of another code word; (b) (θ-comma-free) a code word is a reverse complement of
a subword of a concatenation of two other code words; (c) (θ-infix) one code word
is a reverse complement of a subword of another code word; (d) (θ-suffix) one code
word is a reverse complement of a suffix of another code word; (e) (θ-prefix) one
code word is a reverse complement of a prefix of another code word. The 3′ end is
indicated with an arrow.

Solid codes were introduced in [28] in the context of the study of disjunctive
domains. Certain combinatorial and closure properties of solid codes were
discussed in [15]. Properties of maximal solid codes were discussed in [17]. We
now recall the definition of solid codes used in [17] which was defined using a
characterization given in [15].

Definition 2. A set X ⊆ Σ+ is a solid code if

1. X is an infix code
2. PPref(X) ∩ PSuff(X) = ∅.

140 L. Kari, K. Mahalingam

The notion of solid codes was extended to involution solid codes in [25].
Note that when the involution map denotes the Watson–Crick complement,
the set of involution solid codes comprises of DNA strands that are overlap-
free (see Fig. 1).

Definition 3. Let X ⊆ Σ+.

1. The set X is called θ-overlap-free if PPref(X) ∩ PSuff(θ(X)) = ∅ and
PSuff(X) ∩ PPref(θ(X)) = ∅.

2. X is a θ-solid code if X is θ-infix and θ-overlap free.
3. X is a maximal θ-solid code iff for no word u ∈ Σ+ \ X, the language

X ∪ {x} is a θ-solid code.

Throughout the rest of the chapter we use θ to be either a morphic or
antimorphic involution unless specified. Note that X is θ-overlap free (θ-solid)
iff θ(X) is θ-overlap free (θ-solid).

3 Properties of Involution Overlap-Free Codes

In this section we discuss the properties of the class of involution overlap-free
codes. We also discuss the relation between the overlap-free codes and some
of the previously defined codes (see Definition 1).

Proposition 1. Let θ be an antimorphic involution. If X is θ-overhang-free
then X is θ-overlap-free.

Proof. Let X be θ-overhang-free. To show that X is θ-overlap free, let us
suppose there exists xw ∈ X and wy ∈ θ(X). Then θ(y)θ(w) ∈ X which is
a contradiction to our assumption that X is θ-overhang-free. The case when
wx ∈ X and yw ∈ θ(X) also result in a contradiction.

Proposition 2. If X is a strictly θ-solid code then X+ is θ-overlap free.

Proof. We need to show that PPref(X+)∩PSuff(θ(X+)) = ∅ and PSuff(X+)∩
PPref(θ(X+)) = ∅. Suppose X+ is not θ-overlap-free. Then there exists x ∈
PPref(X+) ∩ PSuff(θ(X+)) such that x = x1x2 . . . xia1 = θ(a2)θ(y1)...θ(yj)
for xi, yj ∈ X for all i, j. Then either xi is a subword of θ(yj) which is a
contradiction to our assumption that X is θ-infix, or a1 ∈ PSuff(θ(yj)) which
is again a contradiction. Hence PPref(X+) ∩ PSuff(θ(X+)) = ∅. Similarly we
can show that PSuff(X+) ∩ PPref(θ(X+)) = ∅.
Corollary 1. Let X, Y ⊆ Σ+ be such that X∪Y is strictly θ-solid. Then XY
is θ-overlap-free.

Proposition 3. Let X be such that Xn is θ-overlap-free for some n ≥ 1.
Then X i, 1 ≤ i ≤ n, is also θ-overlap-free.

Proof. Suppose not. Then there exists ax ∈ X i, ya ∈ θ(X i) for some 1 ≤ i ≤
n. Let r ∈ Xj such that i+ j = n. Then axr ∈ Xn and θ(r)ya ∈ θ(Xn) which
implies a ∈ PPref(Xn) ∩ PSuff(θ(Xn)) which is a contradiction. Similarly we
can show PPref(θ(Xn)) ∩ PSuff(Xn) = ∅.

Involution Solid Codes 141

4 Properties of Involution Solid Codes

In this section we discuss the properties of the class of involution solid codes.
It turns out that involution solid codes are closed under a restricted kind of
product, arbitrary intersections and catenation closure while not closed under
union, complement, product and homomorphisms. The first two properties
are immediate consequences of the definitions.

Proposition 4. The class of θ-solid codes is closed under arbitrary intersec-
tion.

Proposition 5. The class of θ-solid codes is not closed under union, comple-
ment, product and homomorphism.

Proof. Consider the θ-solid codes {a} and {ab} over the alphabet set Σ =
{a, b} and with θ being an antimorphic involution that maps a �→ b and
b �→ a. The sets {a, ab} = {a} ∪ {ab} and {aba} = {ab}{a} are not θ-solid.
This proves the statement for union and concatenation. Let h : Σ∗ �→ Σ∗ be a
homomorphism such that h(a) = aba and h(b) = bab. Note that {a} is θ-solid
but h(a) = aba is not θ-solid.

Note that for X ⊆ Σ+ and θ a morphic or antimorphic involution, X is
θ-solid code iff θ(X) is θ-solid code.

Proposition 6. If X is a θ-solid code then X is strictly θ-comma-free.

Proof. Note that since PPref(X)∩PSuff(θ(X)) = ∅, X is strictly θ. Suppose X
is not θ-comma-free. Then there are x, y, z ∈ X such that xy = aθ(z)b, a, b ∈
Σ+. Then either θ(z) is a subword of x or a subword of y which contradicts
that X is θ-infix, or θ(z) = z1z2 such that az1 = x and z2b = y which
implies z1 ∈ PPref(θ(X))∩PSuff(X) and z2 ∈ PPref(X)∩PSuff(θ(X)) which
contradicts our assumption that X is θ-overlap-free and hence X is a θ-solid
code.

Note that the converse of the above proposition holds when θ is the identity
(see [10]) but not for any general θ. For example let X = {aa, baa} and for an
antimorphic θ : a → b, b → a, θ(X) = {bb, bba}. It is easy to check that X is
θ-comma-free. But ba ∈ PPref(X) ∩PSuff(θ(X)) which contradicts condition
2 of Definition 3.

Proposition 7. Let X, Y ⊆ Σ+ be such that X and Y are strictly θ and
X ∩ θ(Y) = ∅. If X ∪ Y is θ-solid then XY is θ-solid.

Proof. Suppose XY is not θ-infix. Then there exists x1, x2 ∈ X and y1, y2 ∈ Y
such that x1y1 = aθ(x2y2)b for some a, b ∈ Σ∗ not both empty. When θ is
morphic, x1y1 = aθ(x2)θ(y2)b. Then either θ(x2) is a subword of x1 or θ(y2) is
a subword of y1 which is a contradiction with X∪Y is θ-infix. A similar contra-
diction arises when θ is antimorphic. Suppose PPref(XY)∩PSuff(θ(XY)) 	= ∅.
Then there exists p ∈ PPref(XY) and θ(q) ∈ PSuff(θ(XY)) such that
p = θ(q). Then the following cases arise:

142 L. Kari, K. Mahalingam

1. p ∈ PPref(X) and θ(q) ∈ PSuff(θ(Y)) or θ(q) ∈ PSuff(θ(X))
2. p ∈ PPref(X) and θ(q) ∈ PSuff(θ(XY))
3. p ∈ X and θ(q) ∈ θ(X) or θ(q) ∈ θ(Y).

The first two cases contradict our assumption that X ∪ Y is θ-solid and the
third case contradicts our assumption that X is strictly θ or X ∩ θ(Y) = ∅.
Similarly we can show that PSuff(XY) ∩ PPref(θ(XY)) = ∅.
Corollary 2. If X is a strictly θ-solid code then Xn is a θ-solid code.

Proposition 8. The code X is a strictly θ-solid code iff X+ is a strictly θ-
solid code.

Proof. X is a θ-solid code and hence X is strictly θ-comma-free which implies
X+ is θ-infix (see Proposition 3.3 in [14]). From Proposition 2, X+ is θ-
overlap-free and hence X+ is θ-solid. The converse is immediate.

Proposition 9. Let X be a regular language. It is decidable whether or not
X is a θ-solid code.

Proof. It has been proved in [11] that it is decidable whether X is θ-infix or
not. The sets PPref(X) and PSuff(X) are known to be regular for regular
X and also θ(X) is also regular when X is regular. Hence PPref(θ(X)) and
PSuff(θ(X)) are also regular. In order to decide whether X is θ-solid one
needs to decide whether the intersection PPref(θ(X)) ∩ PSuff(X) = ∅ and
PSuff(θ(X)) ∩ PPref(X) = ∅ which is decidable for regular X .

Proposition 10. Let θ be a morphic or antimorphic involution and X ⊆ Σ+

be a strictly θ-solid code. Then Y = {u1vu2 : u1u2, v ∈ X, u1, u2 ∈ Σ∗} is a
θ-solid code.

Proof. Given X is θ-solid, we need to show that Y is θ-infix and PPref(Y) ∩
PSuff(θ(Y)) = ∅ and PPref(θ(Y)) ∩ PSuff(Y) = ∅. Suppose Y is not θ-infix,
then there exists p, q ∈ Y such that p = u1x1v1, q = u2x2v2 and p = aθ(q)b
for some a, b ∈ Σ∗, u1v1, u2v2, x1, x2 ∈ X . Hence when θ is a morphic invo-
lution we have u1x1v1 = aθ(u2)θ(x2)θ(v2)b. Then either θ(x2) is a subword
of u1 or v1, or θ(x2) is a subword of u1x1 or x1v1. Both cases contradict
our assumption that X is θ-solid. Similarly we can prove when θ is anti-
morphic involution. Suppose there exists a ∈ PPref(Y) ∩ PSuff(θ(Y)). Then
a ∈ PPref(u1x1v1) and a ∈ PSuff(θ(u2x2v2)) for some u1x1v1, u2x2v2 ∈ Y .
There are several cases that we need to consider which eventually boil
down to one of three below. We show when θ is an antimorphic involu-
tion and the case when θ is morphism can be proved similarly. We have
a ∈ PPref(u1x1v1) and a ∈ PSuff(θ(v2)θ(x2)θ(v2)). Then either a ∈ PPref(u1)
and PSuff(θ(u2)) or a ∈ PPref(u1) and a ∈ PSuff(θ(x2)θ(u2)) or a ∈
PPref(u1) and a ∈ PSuff(θ(v2)θ(x2)θ(u2)). The first two cases contradict
PPref(X) ∩ PSuff(θ(X)) = ∅ and the third case contradicts X being θ-infix.
Similarly we can show PSuff(Y) ∩ PPref(θ(Y)) = ∅. Therefore Y is θ-solid
code.

Involution Solid Codes 143

The next proposition provides a general method for constructing certain
maximal θ-solid codes.

Proposition 11. Let θ be an antimorphic involution. Let Σ = A∪B∪C such
that A, B, C are disjoint sets such that A and C are strictly θ and A∩θ(B) = ∅
and C ∩ θ(B) = ∅. Then X = AB∗C is a maximal θ-solid code.

Proof. First we show that X is θ-solid. Suppose X is not θ-solid. Then ei-
ther X is not θ-infix or X is not θ-overlap-free. Suppose X is not θ-infix.
Then there exists a1b1...bnc1, a2d1...dkc2 ∈ AB∗C with a1, a2 ∈ A, c1, c2 ∈ C
and b1...bn, d1...dk ∈ B∗ such that a1b1...bnc1 = pθ(a2d1...dkc2)q and hence
a1b1...bnc1 = pθ(c2)θ(dk)...θ(d1)θ(a2)q for some p, q ∈ Σ∗ not both empty. If
q ∈ Σ+ then θ(a2) = bi for some i and if p ∈ Σ+ then θ(c2) = bj for some j.
Both cases contradict our assumption that A ∩ θ(B) = ∅ and C ∩ θ(B) =
∅. Suppose x ∈ PPref(X) ∩ PSuff(θ(X)). Then either x = a1b1 . . . bi =
θ(di) . . . θ(d1)θ(a2) for some a1, a2 ∈ A and b1 . . . bi, d1 . . . di ∈ B which con-
tradicts our assumption that A∩θ(B) = ∅ or x = a1 = θ(a2) which contradicts
our assumption that A is strictly θ. Hence PPref(X)∩PSuff(θ(X)) = ∅. Sim-
ilarly we can show that PPref(θ(X)) ∩ PSuff(X) = ∅. Hence X is a θ-solid
code.

To show that X = AB∗C is maximal. Consider a word w ∈ Σ∗ such
that w /∈ X where w = x1x2...xn with xi ∈ Σ for i = 1, . . . , n. We show that
X∪{w} is not θ-solid. Assume there is an index i with xi ∈ θ(C) and in fact let
i be the minimal with this property. If i = n then xi ∈ PSuff(w)∩PPref(θ(v))
for some v ∈ X . Hence X ∪ {w} is not θ-solid. If i < n then xi+1, ..., xn ∈
θ(B) ∪ θ(A). If xi+1 ∈ θ(A) then xixi+1 ∈ θ(X) ∩ Sub(w) and X ∪ {w} is
not θ-solid. Therefore assume that xi+1 ∈ θ(B). If xi+1...xn ∈ θ(B+) then
xixi+1...xn ∈ PSuff(w) ∩ PPref(θ(v)) for some v ∈ X and X ∪ {w} is not
θ-solid. Thus, there is an index j with i + 1 < j ≤ n and xj ∈ θ(A). Choose
j minimal with these properties. Then xixi+1...xj ∈ θ(X) ∩ Sub(w), hence
X ∪{w} is not θ-solid. So far we have proved that w cannot contain a symbol
from θ(C) if X ∪ {w} is to be θ-solid. Similarly we can show that w cannot
contain a symbol from θ(A). Hence w ∈ θ(B∗) (i.e.) w ∈ Sub(θ(v)) for some
v ∈ X which again contradicts our assumption that X ∪{w} is θ-solid. Hence
X is a maximal θ-solid code.

From the above definitions and propositions we have deduced the following.

Lemma 1. Let θ be an antimorphic involution.

1. Let Σ1, ..., Σn be a partition of Σ such that Σi is strictly θ for all i. Then
every language ΣiΣj is θ-solid.

2. If Σ1, Σ2 is a partition of Σ such that Σi is strictly θ for i = 1, 2, then
Σ1Σ2 is maximal θ-solid code.

3. Let A ⊆ Σ be such that A = θ(A) and X ⊆ A+. Then X is a maximal
θ-solid code over A if and only if X ∪ (Σ \ A) is a maximal θ-solid code
over Σ.

144 L. Kari, K. Mahalingam

4. Let B ⊆ Σ such that B ∩ θ(B) = ∅. Then X = B+ is a θ-solid code.

The next proposition provides us with conditions so that the involution
solid codes are preserved under a morphic or antimorphic mapping.

Proposition 12. Let Σ1 and Σ2 be finite alphabet sets and let f be an injec-
tive morphism or antimorphism from Σ1 �→ Σ∗

2 . Let X be a code over Σ∗
1 .

Then f(X) is a code over Σ∗
2 . Let θ1 : Σ∗

1 �→ Σ∗
1 and θ2 : Σ∗

2 �→ Σ∗
2 be

both morphic or antimorphic involutions such that f(θ1(x)) = θ2(f(x)) for all
x ∈ X. Let P = Pref(θ2(f(X)) and S = Suff(θ2(f(X)). Let (A+P ∩ SA+) ∩
f(Σ+

1) = ∅ and A+PA+ ∩ f(Σ1) = ∅ where A = Σ∗
2 \ f(Σ∗

1). If X is θ1-solid
then f(X) is θ2-solid.

Proof. Let X be a θ1-solid code. Note that f(X) is θ2-infix [14]. We need
to show that PPref(f(X)) ∩ PSuff(θ2(f(X))) = ∅ as well as PSuff(f(X)) ∩
PPref(θ2(f(X))) = ∅ hold. Let θ1 and θ2 be morphic involutions and let f be
an injective antimorphism. Suppose there exists a ∈ PPref(f(x1x2)) and a ∈
PSuff(θ2(f(y1y2)) for some x1x2, y1y2 ∈ X . Note that f(x1x2) = f(x2)f(x1)
and θ2(f(y1y2)) = f(θ1(y1y2)) = f(θ1(y1)θ1(y2)) = f(θ1(y2))f(θ1(y1)). Hence
if a = f(x2) = f(θ1(y1)) then x2 = θ1(y1) since f is injective which is a
contradiction to PPref(X) ∩PSuff(θ1(X)) = ∅. The other case can be proved
similarly. Hence f(X) is θ2-solid.

Acknowledgment Research supported by NSERC and Canada Research
Chair grants for Lila Kari.

References

1. E.B. Baum, DNA Sequences useful for computation, unpublished article, avail-
able at: http://www.neci.nj.nec.com/homepages/eric/seq.ps (1996).

2. J. Berstel, D. Perrin, Theory of Codes, Academic Press, Inc., Orlando, Florida,
1985.

3. R. Deaton, J. Chen, H. Bi, M. Garzon, H. Rubin, D.H. Wood, A PCR based pro-
tocol for n vitro selection of non-crosshybridizing oligonucleotides, DNA Com-
puting: Proceedings of the 8th International Meeting on DNA Based Computers
(M. Hagiya, A. Ohuchi editors), Springer LNCS 2568 (2003): 196–204.

4. R. Deaton, J. Chen, M. Garzon, J. Kim, D. Wood, H. Bi, D. Carpenter, Y. Wang,
Characterization of non-crosshybridizing DNA oligonucleotides manufactured
in vitro, DNA computing: Preliminary Proceedings of the 10th International
Meeting on DNA Based Computers (C. Ferretti, G. Mauri, C. Zandron editors)
Springer LNCS 3384, (2005): 50–61.

5. R. Deaton et al, A DNA based implementation of an evolutionary search for
good encodings for DNA computation, Proc. IEEE Conference on Evolutionary
Computation ICEC-97, (1997): 267–271.

Involution Solid Codes 145

6. D. Faulhammer, A.R. Cukras, R.J. Lipton, L.F.Landweber, Molecular Compu-
tation: RNA solutions to chess problems, Proceedings of the National Academy
of Sciences, USA, 97 4 (2000): 1385–1389.

7. M. Garzon, R. Deaton, D. Renault, Virtual test tubes: a new methodology for
computing, Proc. 7th. Int. Symposium on String Processing and Information
retrieval, A Corun̆a, Spain. IEEE Computing Society Press (2000): 116–121.

8. T. Head, Formal language theory and DNA: an analysis of the generative capac-
ity of specific recombinant behaviors, Bull. Math. Biology 49 (1987): 737–759.

9. T. Head, Gh. Paun, D. Pixton, Language theory and molecular genetics, in
Handbook of Formal Languages, Vol.II (G. Rozenberg, A. Salomaa editors)
Springer-Verlag (1997): 295–358.

10. T. Head, Relativized code concepts and multi-tube DNA dictionaries, in Finite
vs Infinite, C.S. Calude and Gh. Paun editors, Springer-Verlag (2000): 175–186.

11. S. Hussini, L. Kari, S. Konstantinidis, Coding properties of DNA languages,
DNA Computing: Proceedings of the 7th International Meeting on DNA Based

Computers (N. Jonoska, N.C. Seeman editors), Springer LNCS 2340 (2002):
57–69.

12. N. Jonoska, D. Kephart, K. Mahalingam, Generating DNA code words, Con-
gressus Numerantium 156 (2002): 99–110.

13. N. Jonoska, K. Mahalingam, Languages of DNA based code words Proceedings
of the 9th International Meeting on DNA Based Computers, J. Chen, J. Reif
editors, Springer LNCS 2943 (2004): 61–73.

14. N. Jonoska, K. Mahalingam, J. Chen, Involution codes: with application to DNA
coded languages, Natural Computing 4 2 (2005): 141–162.

15. H. Jürgensen, S.S. Yu, Solid codes, Journal of Information Processing and Cy-
bernetics, EIK 26 (10) (1990): 563–574.

16. H. Jürgensen, S. Konstantinidis, Codes, Handbook of Formal Languages, Vol 1,
Chapter 8, G. Rozenberg and A. Salomaa editors, Springer-Verlag (1997).

17. H. Jürgensen, M. Katsura and S. Konstantinidis, Maximal solid codes, Journal
of Automata, Languages and Combinatorics 6(1) (2001): 25–50.

18. L. Kari, K. Mahalingam, More on involution codes, Preprint.
19. L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak, Sticky-free and overhang-

free DNA languages, Acta Informatica 40 (2003): 119-157.
20. L. Kari, S. Konstantinidis, P. Sosik, Bond-free languages: formalizations, max-

imality and construction methods, in DNA Computng, Ferretti et al. (eds.),
Springer LNCS 3384 (2004): 169-181.

21. L. Kari, S. Konstantinidis, P. Sosik, Preventing undesirable bonds between
DNA codewords, in DNA Computng, Ferretti et al. (eds.), Springer LNCS 3384
(2004): 182-191.

22. D. Kephart, J. Lefevre, Codegen: The generation and testing of DNA code
words, Proceedings of IEEE Congress on Evolutionary Computation, (2004):
1865–1873.

23. P. Leupold, Partial words for DNA coding, in DNA Computng, Ferretti et al.
(eds.), Springer LNCS 3384 (2005): 224–234.

24. Z. Li, Construct DNA code words using backtrack algorithm, preprint.
25. K. Mahalingam, Involution Codes: With Application to DNA Strand Design

Ph.d. Thesis, University of South Florida, Tampa, FL, 2004.
26. A. Marathe, A.E. Condon, R.M. Corn, On combinatorial DNA word design,

DNA Based Computers V, E. Winfree, D.K. Gifford eds., Providence, RI, DI-
MACS, American Mathematical Society, (1999): 75–90.

146 L. Kari, K. Mahalingam

27. H.J. Shyr, Free Monoids and Languages, Hon Min Book Company 2001.
28. H.J. Shyr, S.S. Yu, Solid codes and disjunctive domains, Semigroup Forum, 41

(1990): 23–37.

